Selasa, 14 Juni 2011

fisikawam-fisikawan

Paul Dirac : Si Jenius Dalam Sejarah Fisika
19 November 2008
Paul Andrien Maurice Dirac

Paul Andrien Maurice Dirac

Lebih dari seratus tahun yang lalu, tepatnya pada 8 Agustus 1902, lahirlah seorang anak yang diberi nama Paul Andrien Maurice Dirac di Bristol Inggris. Siapa sangka di kemudian hari anak yang bernama Paul Dirac ini akan menjadi fisikawan besar Inggris yang namanya dapat disejajarkan dengan Newton, Thomson, dan Maxwell. Melalui teori kuantumnya yang menjelaskan tentang elektron, Dirac menjelma menjadi fisikawan ternama di dunia dan namanya kemudian diabadikan bagi persamaan relativistik yang dikembangkannya yaitu persamaan Dirac. Tulisan ini dibuat untuk mengenang kembali perjalanan kariernya yang cemerlang dalam bidang fisika teori.

Dirac kecil tumbuh dan besar di Bristol. Ayahnya yang berasal dari Swiss bernama Charles lahir di kota Monthey dekat Geneva pada tahun 1866 dan kemudian pindah ke Bristol Inggris, untuk menjadi guru bahasa Prancis di Akademi Teknik Merchant Venturers. Ibunya bernama Florence Holten, wanita yang lahir di Liskeard pada tahun 1878 dan menjadi pustakawan di kota Bristol. Ayah dan Ibu Dirac menikah di Bristol pada tahun 1899 dan memiliki tiga orang, anak dua laki-laki (dimana Paul adalah yang lebih muda) dan seorang perempuan. Setelah menyelesaikan pendidikan SMA dan sekolah teknik, Paul Dirac melanjutkan studi di Jurusan teknik elektro Universitas Bristol pada tahun 1918 untuk belajar menjadi insinyur teknik elektro. Pilihannya ini diambil berdasarkan anjuran ayahnya yang menginginkan Paul mendapatkan pekerjaan yang baik.

Dirac menyelesaikan kuliahnya dengan baik, tetapi dia tidak mendapatkan pekerjaan yang cocok paska berkecamuknya perang dunia pada saat itu. Keinginannya adalah pergi ke Universitas Cambridge untuk meperdalam matematika dan fisika. Dia diterima di akademi St John Cambridge pada tahun 1921, tetapi hanya ditawarkan beasiswa yang tidak memadai untuk menyelesaikan kuliahnya. Untungnya dia sanggup mengambil kuliah matematika terapan di Universitas Bristol selama dua tahun tanpa harus membayar uang kuliah dan tetap dapat tinggal di rumah. Setelah itu pada tahun 1923 dia berhasil mendapatkan beasiswa penuh di akademi St John dan dana penelitian dari Departemen perindustrian dan sains, tetapi dana inipun belum bisa menutupi jumlah biaya yang diperlukan untuk kuliah di Cambridge. Pada akhirnya Paul Dirac berhasil mewujudkan keinginannya kuliah di Akademi St John karena adanya permintaan dari pihak universitas. Di Cambridge Paul Dirac mengerjakan semua pekerjaan sepanjang hidupnya sejak kuliah paska sarjananya pada tahun 1923 sampai pensiun sebagai profesor (lucasian professor) pada tahun 1969. Dirac membuktikan bahwa dirinya pantas mendapatkan beasiswa yang diberikan pihak universitas untuk kuliah di Cambridge.

dirac1Pada tanggal 20 oktober 1984 Paul Dirac meninggal dunia pada usia 82 tahun, sebagai peraih hadiah nobel fisika tahun 1933 dan anggota British order of merit tahun 1973. Paul Dirac merupakan fisikawan teoretis Inggris terbesar di abad ke-20. Pada tahun 1995 perayaan besar diselenggarakan di London untuk mengenang hasil karyanya dalam fisika. Sebuah monumen dibuat di Westminster Abbey untuk mengabadikan namanya dan hasil karyanya, di mana di sini dia bergabung bersama sejumlah monumen yang sama yang dibuat untuk Newton, Maxwell, Thomson, Green, dan fisikawan-fisikawan besar lainnya. Pada monumen itu disertakan pula Persamaan Dirac dalam bentuk relativistik yang kompak. Sebenarnya persamaan ini bukanlah persamaan yang digunakan Dirac pada saat itu, tetapi kemudian persamaan ini digunakan oleh mahasiswanya.

Penemuan yang monumental

Dirac mengukuhkan teori mekanika kuantum dalam bentuk yang paling umum dan mengembangkan persamaan relativistik untuk elektron, yang sekarang dinamakan menggunakan nama beliau yaitu persamaan Dirac. Persamaan ini juga mengharuskan adanya keberadaan dari pasangan antipartikel untuk setiap partikel misalnya positron sebagai antipartikel dari elektron. Dia adalah orang pertama yang mengembangkan teori medan kuantum yang menjadi landasan bagi pengembangan seluruh teori tentang partikel subatom atau partikel elementer. Pekerjaan ini memberikan dasar bagi pemahaman kita tentang gaya-gaya alamiah. Dia mengajukan dan menyelidiki konsep kutub magnet tunggal (magnetic monopole), sebuah objek yang masih belum dapat dibuktikan keberadaannya, sebagai cara untuk memasukkan simetri yang lebih besar ke dalam persamaan medan elektromagnetik Maxwell. Paul Dirac melakukan kuantisasi medan gravitasi dan membangun teori medan kuantum umum dengan konstrain dinamis, yang memberikan landasan bagi terbentuknya Teori Gauge dan Teori Superstring, sebagai kandidat Theory Of Everything, yang berkembang sekarang. Teori-teorinya masih berpengaruh dan penting dalam perkembangan fisika hingga saat ini, dan persamaan dan konsep yang dikemukakannya menjadi bahan diskusi di kuliah-kuliah fisika teori di seluruh dunia.
Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum

Dirac bersama Heisenberg, dua orang ysng berjasa dalam pengembangan fisika kuantum

Langkah awal menuju teori kuantum baru dimulai oleh Dirac pada akhir September 1925. Saat itu, R H Fowler pembimbing risetnya menerima salinan makalah dari Werner Heisenberg berisi penjelasan dan pembuktian teori kuantum lama Bohr dan Sommerfeld, yang masih mengacu pada prinsip korespondensi Bohr tetapi berubah persamaannya sehingga teori ini mencakup secara langsung kuantitas observabel. Fowler mengirimkan makalah Heisenberg kepada Dirac yang sedang berlibur di Bristol dan menyuruhnya untuk mempelajari makalah itu secara teliti. Perhatian Dirac langsung tertuju pada hubungan matematis yang aneh, pada saat itu, yang dikemukakan oleh Heisenberg. Beberapa pekan kemudian setelah kembali ke Cambridge, Dirac tersadar bahwa bentuk matematika tersebut mempunyai bentuk yang sama dengan kurung poisson (Poisson bracket) yang terdapat dalam fisika klasik dalam pembahasan tentang dinamika klasik dari gerak partikel. Didasarkan pada pemikiran ini dengan cepat dia merumuskan ulang teori kuantum yang didasarkan pada variabel dinamis non-komut (non-comuting dinamical variables). Cara ini membawanya kepada formulasi mekanika kuantum yang lebih umum dibandingkan dengan yang telah dirumuskan oleh fisikawan yang lain.

Pekerjaan ini merupakan pencapaian terbaik yang dilakukan oleh Dirac yang menempatkannya lebih tinggi dari fisikawan lain yang pada saat itu sama-sama mengembangkan teori kuantum. Sebagai fisikawan muda yang baru berusia 25 tahun, dia cepat diterima oleh komunitas fisikawan teoretis pada masa itu. Dia diundang untuk berbicara di konferensi-konferensi yang diselenggarakan oleh komunitas fisika teori, termasuk kongres Solvay pada tahun 1927 dan tergabung sebagai anggota dengan hak-hak yang sama dengan anggota yang lain yang terdiri dari para pakar fisika ternama dari seluruh dunia.

Formulasi umum tentang teori kuantum yang dikembangkan oleh Dirac memungkinkannya untuk melangkah lebih jauh. Dengan formulasi ini, dia mampu mengembangkan teori transformasi yang dapat menghubungkan berbagai formulasi-formulasi yang berbeda dari teori kuantum. Teori tranformasi menunjukkan bahwa semua formulasi tersebut pada dasarnya memiliki konsekuensi fisis yang sama, baik dalam persamaan mekanika gelombang Schrodinger maupun mekanika matriksnya Heisenberg. Ini merupakan pencapaian yang gemilang yang membawa pada pemahaman dan kegunaan yang lebih luas dari mekanika kuantum. Teori transformasi ini merupakan puncak dari pengembangan mekanika kuantum oleh Dirac karena teori ini menyatukan berbagai versi dari mekanika kuantum, yang juga memberikan jalan bagi pengembangan mekanika kuantum selanjutnya. Di kemudian hari rumusan teori transformasi ini menjadi miliknya sebagaimana tidak ada versi mekanika kuantum yang tidak menyertainya. Bersama dengan teori transformasi, mekanika kuantum versi Dirac disajikan dalam bentuk yang sederhana dan indah, dengan struktur yang menunjukkan kepraktisan dan konsep yang elegan, namun berkaitan erat dengan teori klasik. konsep ini menunjukkan kepada kita aspek baru dari alam semesta yang belum pernah terbayangkan sebelumnya.

Karier cemerlang Dirac sesungguhnya telah tampak ketika dia masih berada di tingkat sarjana. Pada saat itu Dirac telah menyadari pentingnya teori relativitas khusus dalam fisika, suatu teori yang menjadikan Einstein terkenal pada tahun 1905, yang dipelajari Dirac dari kuliah yang dibawakan oleh C D Broad, seorang profesor filsafat di Universitas Bristol. Sebagian besar makalah yang dibuat Dirac sebagai mahasiswa paska sarjana ditujukan untuk menyajikan bentuk baru dari rumusan yang sudah ada dalam literatur menjadi rumusan yang sesuai (kompatibel) dengan relativitas khusus. Pada tahun 1927 Dirac berhasil mengembangkan teori elektron yang memenuhi kondisi yang disyaratkan oleh teori relativitas khusus dan mempublikasikan persamaan relativistik yang invarian untuk elektron pada awal tahun 1928.
Persamaan Dirac

Persamaan Dirac

Sebagian fisikawan lain sebenarnya memiliki pemikiran yang sama dengan apa yang dilakukan oleh Dirac, meskipun demikian belum ada yang mampu menemukan persamaan yang memenuhi seperti apa yang telah dicapai oleh Dirac. Dia memiliki argumen yang sederhana dan elegan yang didasarkan pada tujuan bahwa teori tranformasinya dapat berlaku juga dalam mekanika kuantum relativistik – sebuah argumen yang menspesifikasikan bentuk umum dari yang harus dimiliki oleh persamaan relativistik ini, sebuah argumen yang menjadi bagian yang belum terpecahkan bagi semua fisikawan. Teori tranformasinya harus memuat persamaan yang tidak hanya berupa turunan waktu, sementara asumsi relativitas mensyaratkan bahwa persamaannya harus juga dapat linier di dalam turunan ruang. Persamaan Dirac merupakan salah satu persamaan fisika yang paling indah. Profesor Sir Nevill Mott, mantan Direktur Laboratorium Cavendish, baru-baru ini menulis,”persamaan ini bagi saya adalah bagian fisika teori yang paling indah dan menantang yang pernah saya lihat sepanjang hidup saya, yang hanya bisa dibandingkan dengan kesimpulan Maxwell bahwa arus perpindahan dan juga medan elektromagnetik harus ada. Selain itu, persamaan Dirac untuk elektron membawa implikasi penting bahwa elektron harus mempunyai spin ½, dan momen magnetik eh/4pm menjadi benar dengan ketelitian mencapai 0,1%.

dirac_21

Persamaan Dirac dan teori elektronnya masih tetap relevan digunakan sampai sekarang. Perkiraan yang dibuatnya telah dibuktikan dalam sistem atom dan molekul. Telah ditunjukkan juga bahwa hal ini berlaku untuk partikel lain yang memiliki spin yang sama dengan elektron seperti proton, hyperon dan partikel keluarga baryon lainnya. konsep ini dapat diterapkan secara universal dan diketahui dengan baik oleh para fisikawan dan kimiawan, sesuatu yang tidak seorangpun dapat membantahnya. Melihat kenyataan ini, Dirac merasa sudah waktunya untuk menyatakan, ”teori umum mekanika kuantum sudah lengkap sekarang …… hukum-hukum fisika yang yang mendasari diperlukannya teori matematika dari bagian besar fisika dan keseluruhan bagian dari kimia telah diketahui secara lengkap.”

Indahnya Fisika

Dirac menunjukkan kemudian bahwa persamaannya ini mengandung implikasi yang tidak diharapkan bagi suatu partikel. Persamaannya memperkirakan adanya antipartikel, seperti positron dan antiproton yang bermuatan negatif, yaitu suatu objek yang saat ini sudah sangat dikenal di laboratorium fisika energi tinggi. Menurut teorinya, semua partikel memiliki antipartikel tertentu yang terkait dengannya. sebagian besar dari antipartikel ini sekarang telah dibuktikan keberadaannya. Positron dan antiproton adalah sebagian kecil dari antipartikel yang sudah sangat dikenal, keduanya dapat berada dalam kondisi stabil di ruang hampa, dan saat ini digunakan secara luas dalam akselerator penumbuk partikel (collider accelerator) yang dengannya fisikawan mempelajari fenomena yang terjadi dalam fisika energi tinggi.
Dirac dan Persamaan Relativistiknya

Dirac dan Persamaan Relativistiknya

Penting diungkapkan di sini keindahan dari persamaan Dirac. Keindahan ini bisa jadi sulit dirasakan oleh orang yang tidak terbiasa dengan rumus-rumus fisika, tetapi kenyataan ini tidak akan dibantah oleh para fisikawan. Persamaan Dirac adalah salah satu penemuan besar dalam sejarah fisika. Melalui pekerjaannya ini, Dirac memberikan prinsip-prinsip dasar yang memuaskan dalam usaha untuk memahami alam semesta kita. Melalui penemuannya ini nama Dirac akan dikenang selamanya sebagai salah satu fisikawan besar. Suatu monumen telah dibangun untuknya atas jasanya membimbing kita kepada pemahaman tentang salah satu aspek penting gaya dasar yang terkandung di alam semesta yang kita diami ini.
Persamaan Dirac dalam bentuk lain

Persamaan Dirac dalam bentuk lain

Nama Dirac akan dimasukkan dalam catatan sejarah fisika atas kontribusi yang diberikannya kepada dunia sains khususnya fisika berupa dasar-dasar mekanika kuantum dan teori transformasi. Penemuannya menempatkan Dirac di jajaran papan atas fisikawan teori sepanjang masa – seorang jenius yang hebat dalam sejarah fisika.

Hukum-hukum fisika

Bunyi Hukum-hukum dalam ilmu fisika

Oktober 3, 2007 zionshinigami

Hukum Archimedes

Kalau suatu benda dicelupkan ke dalam suatu zat cair, maka benda itu akan mendapat tekanan ke atas yang besarnya sama dengan berat zat cair yang terdesak oleh benda tersebut.

Hukum Avogadro

Jika dua macam gas atau lebih sama volumenya, maka gas-gas tersebut sama banyak pula jumlah molekul-molekulnya masing-masing, asal temperatur dan tekanannya sama pula.

Hukum Boyle

Jika suatu kwantitas dari suatu gas ideal (yakni kwantitas menurut beratnya) mempunyai temperatur konstan, maka hasil kali volume dan tekanannya juga merupakan bilangan konstan.

Hukum Newton

Dua benda salaing tarik menarik dengan suatu gaya yang sebanding-selaras dengan massa-massa dari kedua benda tersebut dan sebanding-balik dengan kuadrat dari jarak antara kedua benda itu.

Hukum Ohm

Jika suatu arus listrik melalui suatu penghantar, maka kekuatan arus tersebut adalah sebanding-selaras dengan tegangan listrik yang terdapat diantara kedua ujung penghantar tadi.

Hukum Pascal

Jika suatu zat cair dikenakan tekanan, maka tekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya.

Hukum Snellius

1. Jika suatu cahaya melalui perbatasan dua jenis zat cair, maka garis semula tersebut adalah garis sesudah sinar itu membias dan garis normal dititik biasnya, ketiga garis tersebut terletak dalam satu bidang datar.
2. Perbandingan antara sinar-sinar dari sudut masuk dan sudut bias adalah bias

Hukum-hukum fisika

Bunyi Hukum-hukum dalam ilmu fisika

Oktober 3, 2007 zionshinigami

Hukum Archimedes

Kalau suatu benda dicelupkan ke dalam suatu zat cair, maka benda itu akan mendapat tekanan ke atas yang besarnya sama dengan berat zat cair yang terdesak oleh benda tersebut.

Hukum Avogadro

Jika dua macam gas atau lebih sama volumenya, maka gas-gas tersebut sama banyak pula jumlah molekul-molekulnya masing-masing, asal temperatur dan tekanannya sama pula.

Hukum Boyle

Jika suatu kwantitas dari suatu gas ideal (yakni kwantitas menurut beratnya) mempunyai temperatur konstan, maka hasil kali volume dan tekanannya juga merupakan bilangan konstan.

Hukum Newton

Dua benda salaing tarik menarik dengan suatu gaya yang sebanding-selaras dengan massa-massa dari kedua benda tersebut dan sebanding-balik dengan kuadrat dari jarak antara kedua benda itu.

Hukum Ohm

Jika suatu arus listrik melalui suatu penghantar, maka kekuatan arus tersebut adalah sebanding-selaras dengan tegangan listrik yang terdapat diantara kedua ujung penghantar tadi.

Hukum Pascal

Jika suatu zat cair dikenakan tekanan, maka tekanan itu akan merambat ke segala arah dengan tidak bertambah atau berkurang kekuatannya.

Hukum Snellius

1. Jika suatu cahaya melalui perbatasan dua jenis zat cair, maka garis semula tersebut adalah garis sesudah sinar itu membias dan garis normal dititik biasnya, ketiga garis tersebut terletak dalam satu bidang datar.
2. Perbandingan antara sinar-sinar dari sudut masuk dan sudut bias adalah bias

FISIKA

Fisika (Bahasa Yunani: φυσικός (physikos), "alamiah", dan φύσις (physis), "Alam") adalah sains atau ilmu tentang alam dalam makna yang terluas. Fisika mempelajari gejala alam yang tidak hidup atau materi dalam lingkup ruang dan waktu. Para fisikawan atau ahli fisika mempelajari perilaku dan sifat materi dalam bidang yang sangat beragam, mulai dari partikel submikroskopis yang membentuk segala materi (fisika partikel) hingga perilaku materi alam semesta sebagai satu kesatuan kosmos.

Beberapa sifat yang dipelajari dalam fisika merupakan sifat yang ada dalam semua sistem materi yang ada, seperti hukum kekekalan energi. Sifat semacam ini sering disebut sebagai hukum fisika. Fisika sering disebut sebagai "ilmu paling mendasar", karena setiap ilmu alam lainnya (biologi, kimia, geologi, dan lain-lain) mempelajari jenis sistem materi tertentu yang mematuhi hukum fisika. Misalnya, kimia adalah ilmu tentang molekul dan zat kimia yang dibentuknya. Sifat suatu zat kimia ditentukan oleh sifat molekul yang membentuknya, yang dapat dijelaskan oleh ilmu fisika seperti mekanika kuantum, termodinamika, dan elektromagnetika.

Fisika juga berkaitan erat dengan matematika. Teori fisika banyak dinyatakan dalam notasi matematis, dan matematika yang digunakan biasanya lebih rumit daripada matematika yang digunakan dalam bidang sains lainnya. Perbedaan antara fisika dan matematika adalah: fisika berkaitan dengan pemerian dunia material, sedangkan matematika berkaitan dengan pola-pola abstrak yang tak selalu berhubungan dengan dunia material. Namun, perbedaan ini tidak selalu tampak jelas. Ada wilayah luas penelitan yang beririsan antara fisika dan matematika, yakni fisika matematis, yang mengembangkan struktur matematis bagi teori-teori fisika.

Fisika teoretis dan eksperimental

Budaya penelitian fisika berbeda dengan ilmu lainnya karena adanya pemisahan teori dan eksperimen. Sejak abad kedua puluh, kebanyakan fisikawan perseorangan mengkhususkan diri meneliti dalam fisika teoretis atau fisika eksperimental saja, dan pada abad kedua puluh, sedikit saja yang berhasil dalam kedua bidang tersebut. Sebaliknya, hampir semua teoris dalam biologi dan kimia juga merupakan eksperimentalis yang sukses.

Gampangnya, teoris berusaha mengembangkan teori yang dapat menjelaskan hasil eksperimen yang telah dicoba dan dapat memperkirakan hasil eksperimen yang akan datang. Sementara itu, eksperimentalis menyusun dan melaksanakan eksperimen untuk menguji perkiraan teoretis. Meskipun teori dan eksperimen dikembangkan secara terpisah, mereka saling bergantung. Kemajuan dalam fisika biasanya muncul ketika eksperimentalis membuat penemuan yang tak dapat dijelaska teori yang ada, sehingga mengharuskan dirumuskannya teori-teori baru. Tanpa eksperimen, penelitian teoretis sering berjalan ke arah yang salah; salah satu contohnya adalah teori-M, teori populer dalam fisika energi-tinggi, karena eksperimen untuk mengujinya belum pernah disusun.
[sunting] Teori fisika utama

Meskipun fisika membahas beraneka ragam sistem, ada beberapa teori yang digunakan secara keseluruhan dalam fisika, bukan di satu bidang saja. Setiap teori ini diyakini benar adanya, dalam wilayah kesahihan tertentu. Contohnya, teori mekanika klasik dapat menjelaskan pergerakan benda dengan tepat, asalkan benda ini lebih besar daripada atom dan bergerak dengan kecepatan jauh lebih lambat daripada kecepatan cahaya.

Teori-teori ini masih terus diteliti; contohnya, aspek mengagumkan dari mekanika klasik yang dikenal sebagai teori chaos ditemukan pada abad kedua puluh, tiga abad setelah dirumuskan oleh Isaac Newton. Namun, hanya sedikit fisikawan yang menganggap teori-teori dasar ini menyimpang. Oleh karena itu, teori-teori tersebut digunakan sebagai dasar penelitian menuju topik yang lebih khusus, dan semua pelaku fisika, apa pun spesialisasinya, diharapkan memahami teori-teori tersebut

Kamis, 07 April 2011

konstanta plank

Konstanta Planck

Konstanta Planck, dilambangkan dengan huruf h, adalah konstanta fisika untuk menjelaskan ukuran quanta. Konstanta ini sangat penting dalam teori mekanika kuantum, dan dinamai untuk menghargai Max Planck, salah seorang pendiri teori kuantum. Nilainya kira-kira

Konstanta Planck mempunyai satuan berupa energi dikalikan dengan waktu, yang tidak lain adalah satuan usaha. Satuan ini juga dapat ditulis sebagai momentum dikalikan dengan jarak (Nms), yaitu satuan momentum sudut.

Nilai yang berkaitan adalah Konstanta Planck yang dikurangi:

Simbol π adalah bilangan pi. Konstanta ini, yang dibaca "h-bar", kadang-kadang disebut sebagai Konstanta Dirac, yang diambil dari nama Paul Dirac.

Jumat, 11 Maret 2011

warga masih menggunakan dukun beranak

TOBOALI, BANGKA POS.com -- Hingga saat ini masih banyak warga mengandalkan jasa dukun beranak untuk membantu proses persalinan.

Kini ibu hamil dan melahirkan tidak perlu lagi ke dukun beranak, dengan alasan biaya lebih murah ketimbang ke tempat persalinan dengan membayar biaya yang tinggi.

Untuk menjawabnya, di tahun 2011 ini pemerintah akan menanggung biaya persalinan melalui program jaminan persalinan (jampersal).

"Untuk persalinan normal bisa melalui pelayanan di puskesmas, poskesdes, polindes, poliklinik desa dan kamar kelas III rumah sakit umum daerah. Biaya ditanggung bila masyarakat ke tempat persalinan dan bukan persalinan dilakukan di rumah atau melalui jasa dukun." kata Kasi Promkes dan Komunitas, Dinas Kesehatan Bangka Selatan Jakson Damanik, Jumat (11/3/2011). (k10)

Penulis : syafruddin
Editor : rusaidah
Sumber : bangkapos.com